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Results

Evaluation Metrics
Conclusion & Future Implications
For the shallow models, supervised learning models performed best due to their ability to train on 
labeled data with fewer parameters, reducing overfitting and capturing straightforward patterns. In 
contrast, unsupervised learning struggled with anomaly detection due to the absence of labels and 
the need for a threshold value to determine malicious data points. This led to difficulty determining 
strong clusters of benign data points during training and failure to distinguish between classes during 
testing. Deep learning underperformed compared to shallow learning, as the simple dataset led to 
overfitting and high sensitivity to parameters. Training times were also much higher because these 
models have more layers for data to travel through before a decision is output. Future research 
should focus on deep learning for its superior feature detection in complex datasets, which mimics 
real-world energy consumption data, with an emphasis on hyper-tuning parameters.

Introduction
With the rapid growth of Machine Learning comes a major push for modern technical systems to 
increasingly rely on AI-driven solutions to enhance data security and integrity. This includes smart 
power grid systems, where energy consumption data is vulnerable to manipulation by malicious 
users. These users may alter their energy usage records, leading to data inconsistencies and 
financial discrepancies for power providers. This process is also known as false data injection. One 
solution to this issue involves leveraging machine learning models to detect anomalies in user 
consumption patterns and classify suspicious behavior.
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Figure 3: Models the difference between unsupervised learning and 
supervised learning classification algorithms.

• Shallow Learning

Figure 4: Models how a deep learning model processes data. Input cycles 
through several layers of the model before a final output “decision” is given.

• Deep Learning

Methods
• Data Collection:
A sample dataset from the 2009–2010 Irish Smart Metering Trials was used to test machine 
learning models. The data contains user energy consumption behavior at 30-minute intervals 
collected from different users which provided a basis for benign samples. Simulated attack 
functions were performed on random user energy consumption data and a column was added to 
the dataset to label the benign data with ‘0’ and attack data with ‘1’.

Figure 2: Shows the general procedure during the training and testing phases.

Figure 1: Shows a False Data Injection (FDI) Attack
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Figures

Figure 6: Shows the detection rate and false alarm scores for supervised learning models.

Figure 7: Shows the detection rate and false alarm scores for unsupervised learning models.

Figure 8: Shows the detection rate and false alarm scores for deep learning models.

Figure 9: Random Forest Classifier Figure 10: One Class SVM Figure 11: Recurrent Neural Network (RNN)

References

Figure 5: Shows a Confusion Matrix.
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